首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5925篇
  免费   1041篇
  国内免费   993篇
  2024年   18篇
  2023年   341篇
  2022年   238篇
  2021年   383篇
  2020年   458篇
  2019年   500篇
  2018年   440篇
  2017年   380篇
  2016年   341篇
  2015年   282篇
  2014年   332篇
  2013年   459篇
  2012年   268篇
  2011年   245篇
  2010年   236篇
  2009年   299篇
  2008年   301篇
  2007年   305篇
  2006年   297篇
  2005年   297篇
  2004年   260篇
  2003年   213篇
  2002年   164篇
  2001年   143篇
  2000年   131篇
  1999年   79篇
  1998年   77篇
  1997年   63篇
  1996年   56篇
  1995年   42篇
  1994年   39篇
  1993年   22篇
  1992年   28篇
  1991年   28篇
  1990年   25篇
  1989年   19篇
  1988年   17篇
  1987年   19篇
  1986年   14篇
  1985年   16篇
  1984年   22篇
  1983年   10篇
  1982年   14篇
  1981年   3篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1973年   3篇
  1972年   2篇
  1958年   6篇
排序方式: 共有7959条查询结果,搜索用时 31 毫秒
1.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
2.
Case histories and proposed mechanisms formicrobiologically influenced corrosion of metals andalloys by metal depositing microorganisms arereviewed. Mechanisms with indirect participation ofthese microorganisms, usually iron- and manganeseoxidizing species, are distinguished from anothermechanism which accounts specifically for theelectrochemical properties of deposits containingoxides and hydroxides of Mn in higher oxidationstates. The possible influence of such deposits whichwere formed microbiologically is evaluated. Theevaluation is based on the principles ofelectrochemical corrosion of metals and on theelectrochemical properties of Mn3+/4+- compounds.After briefly reviewing the microbiologicalMn-oxidation, experimental evidence for the predictedcorrosion by such deposits is provided and a model formicrobiologically influenced corrosion by manganeseoxidizing microorganisms is proposed for stainlesssteel. Possible consequences of the model andpractical aspects of such a corrosion are discussed.  相似文献   
3.
4.
5.
Field-measured grazing rates (ml/animal/d) of cladocerans (mostly daphniids) and diaptomids were assembled from various published studies and plotted as a function of corresponding phytoplankton concentration (μg l−1 f.w.). Filtering rates of both zooplankton groups initially increased with seston concentration until maximal grazing rates were observed at approximately 4 × 102 and 1 × 102 μg l−1 for cladocerans and copepods, respectively; at higher algal concentrations, filtering rates of both declined as a function of food concentration. The shape of these curves are most consistent with Holling's (1966) Type 3 functional response. We found little support for the Type 3 functional response in published laboratory studies of Daphnia; most investigators report either a Type 1 or Type 2 response. The one study in which the Type 3 response was observed involved experiments where animals were acclimated at low food concentrations for 24 h, whereas those studies associated with response Types 1 or 2 had acclimation periods of only 1 to 3 h. We therefore assembled relevant data from the literature to examine the effect of acclimation period on the feeding rates of Daphnia at low food concentrations. In the absence of any acclimation, animals filtered at extremely low rates. After 2 h of acclimation, however, filtering rates increased 4 to 5-fold but declined again with longer durations; after > 70 h of pre-conditioning, filtering rates were almost as low as they had been with no acclimation. We also found little support for the Type 3 functional response in published studies of copepods. The only study associated with a Type 3 response involved a marine copepod that had been subjected to a starvation period of 48 h; however, an analysis of the effects of acclimation period did not yield conclusive evidence that filtering rates of freshwater copepods (Diaptomus and Eudiaptomus) decrease significantly with acclimation duration. The low filtering rates associated with long acclimation periods in laboratory experiments appears to be a direct result of animals becoming emaciated from prolonged exposure to low food concentrations, a situation which renders them incapable of high filtering rates. This may explain the Type 3 functional response for field cladocerans, since zooplankton in food-limiting situations are constantly exposed to low food concentrations, and would therefore have low body carbon and consequently less energy to filter-feed. We cannot, however, use this to explain the Type 3 response for field diaptomids, since copepods in the laboratory did not appear to lose body carbon even after 72 h of feeding at very low food levels, and there was inconclusive evidence that either Diaptomus or Eudiaptomus decrease their filtering rates with acclimation period. Although Incipient Limiting Concentrations (ILC) for Daphnia ranged from 1 to 8.5 × 103 μg 1−1, more than half of these fell between 1 and 3 × 103 μg l−1, bracketing the value of 2.7 × 102 μg l−1 for field cladocerans. There was, however, a great deal of variation in reported maximum ingestion rates (MIR), maximum filtering rates (MFR) and ILC values for Daphnia magna. ILC values from the few laboratory studies of freshwater copepods ranged between 0.5 to 2.8 × 103 μg 1−1, and was higher than the ILC value of approximately 0.2 × 103 μg l−1 calculated for field populations of D. minutus. Generally, there was considerable agreement among laboratory studies regarding the shape of grazing-rate and ingestion-rate curves when data were converted to similar units and presented on standardized scales.  相似文献   
6.
7.
8.
Transgenic plants and biogeochemical cycles   总被引:13,自引:0,他引:13  
  相似文献   
9.
10.
A. J. Boulton 《Hydrobiologia》1991,211(2):123-136
Eucalypt leaf packs were placed at two sites in an intermittent stream during summer to examine the hypothesis that terrestrially-exposed leaf litter accumulates a richer microbial flora than submerged leaves — a phenomenon observed in Canadian temporary vernal pools. This did not occur; during the experiment, microbial biomass (as ATP) rose steadily on submerged leaves but remained low on terrestrially-exposed leaves. Densities of most functional feeding groups on the submerged leaves increased with time. Scrapers appeared to be more important than shredders in eucalypt leaf breakdown at both sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号